Automorphic forms and - adic representations 4 Takeshi Saito

نویسنده

  • Takeshi Saito
چکیده

In Carayol’s note [4], a geometric construction of the Galois representations associated to Hilbert modular forms and the compatibility with the local Langlands correspondence are discussed. In loc. cit., the compatibility is established in the case = p where the Galois representation is an -adic representation and p is the prime divided by the prime p of the totally real field where the restriction to the decomposition group is considered. The purpose of this note is to sketch the proof of the compatibility in the remaining case p = . In this note, we only discuss the compatibility in the case where the Galois representation is constructed geometrically. Namely, we assume the condition (∗) in Theorem 1 in the text. We only give the main ideas of the proof and refer for the detail to [10]. In other cases, there are alternative arguments using congruences. They cover the cases where the level is prime to p [12] or the residual representation is absolutely irreducible [6] Theorem (4.3). However, the general case still remains open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphic forms and - adic representations 4

In Carayol’s note [4], a geometric construction of the Galois representations associated to Hilbert modular forms and the compatibility with the local Langlands correspondence are discussed. In loc. cit., the compatibility is established in the case = p where the Galois representation is an -adic representation and p is the prime divided by the prime p of the totally real field where the restri...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

Explicit Calculations of Automorphic Forms for Definite Unitary Groups

I give an algorithm for computing the full space of automorphic forms for definite unitary groups over Q, and apply this to calculate the automorphic forms of level G(Ẑ) and various small weights for an example of a rank 3 unitary group. This leads to some examples of various types of endoscopic lifting from automorphic forms for U1 × U1 × U1 and U1 × U2, and to an example of a non-endoscopic f...

متن کامل

AUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES

We introduce the notion of automorphic symbol generalizing the classical modular symbol and use it to attach very general p-adic L-functions to nearly ordinary Hilbert automorphic forms. Then we establish an exact control theorem for the p-adically completed cohomology of a Hilbert modular variety localized at a suitable nearly ordinary maximal ideal of the Hecke algebra. We also show its freen...

متن کامل

Instructional Conference on Representation Theory and Arithmetic Notes Taken by Mike Woodbury

Goal of Conference 2 1. Matt Emerton: Classical Modular Forms to Automorphic Forms 2 1.1. The Growth Condition 3 1.2. Passage to Representation Theory 4 2. David Nadler: Real Lie Groups 5 2.1. Basic Notions 5 2.2. Examples 5 2.3. Classification 6 2.4. Useful Decompositions 7 3. Jacob Lurie: Lie Theory and Algebraic Groups 8 3.1. Classification 9 4. Jacob Lurie: Representations of algebraic grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008